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Cells, the fundamental units of life, are crucial for understanding health, aging, and disease, 

and are essential tools in drug development and synthetic biology. However, cell-based 

experiments are resource-intensive and prone to variability, contributing to the 

reproducibility concerns in biomedical research. 

While the first carbon-based cell emerged through billions of years of evolution, the 

development of the first silicon-based cell now presents a transformative opportunity for the 

science community. The concept of virtual cell or digital cell, introduced circa 2000, initially 

relies on traditional low-throughput biochemical experiments to quantify spatiotemporal 

changes in substances involved in specific biological processes 1. These early models 

employed differential equations and stochastic simulations to model specific cellular 

processes. Pioneering whole-cell virtual models, such as those for Mycoplasma 2, Escherichia 

coli 3 and Saccharomyces cerevisiae 4,5, were primarily based on a priori knowledge. 

However, they lack rigorously designed matched perturbation omics data and spatiotemporal 

imaging data. While groundbreaking, these early models are limited in their ability to fully 

capture the dynamic nature and complexity of living cells, underscoring the need for more 

comprehensive data integration and advanced modeling approaches. 

Recent advancements in high-throughput technologies and artificial intelligence (AI) have 

paved the way for more sophisticated virtual cell simulations. Bunne et al. recently proposed 

the concept of Artificial Intelligence Virtual Cells (AIVCs), which integrate AI and multi-

modal data to create comprehensive computational models of cellular functions 6. These 

AIVCs promise to enable precise and scalable in silico experimentation, potentially 

revolutionizing biomedical research by complementing, or even replacing conventional 

experiments in certain scenarios, with high-throughput simulations. 

Despite the promising outlook of AIVCs, several critical questions remain unanswered. Just 

as a cell culture medium nourishes biological cells, what constitutes the ideal 'culture 

medium' for growing these digital entities? Which cell types should we prioritize for virtual 

cultivation? Addressing these challenges will be crucial for realizing the full potential of 
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AIVCs and their impact on drug development, disease modeling, and fundamental biological 

research. As we stand at the threshold of this new era in cellular modeling, the scientific 

community should collaborate to establish standards and best practices for AIVC 

development and validation. 

Three data pillars for growing AIVCs 

We propose here that the evolution or growth of AIVC relies on three essential building 

blocks and nutrients: a priori knowledge, static architecture, and dynamic states. These data 

pillars, when combined with deep learning algorithms, form the foundation for AIVC 

development (Figure 1).  

The biomedical community has generated vast amounts of cell-related data, including text-

based literature, molecular expression data, and multi-scale imaging from the organismal to 

the nanoscale level. With the rapid advancement of AI, we speculate that a comprehensive 

foundation model integrating all these data sources could be developed, serving as a 

fundamental basis for constructing AIVC. We designate a priori knowledge as the first pillar 

of AIVC construction. Despite its vast size and diversity, this knowledge base primarily 

consists of fragmented information across different cell types and populations. While it is 

unrealistic to build a fully functional AIVC for a specific cell type solely from these data, 

they encapsulate fundamental cell biological mechanisms essential for model construction. 

Furthermore, as these data already exist and require no additional generation cost for AIVC 

developers, they provide an ideal starting point for building AIVC. 

However, while the a priori knowledge pillar is rich in diverse cell biology information, it 

cannot be directly used to construct a specific AIVC model. To achieve this, a comprehensive 

characterization of a specific cell is required, capturing its complete cellular structures at both 

the morphological and molecular expression levels, along with their interactions. We define 

this second essential pillar of AIVC construction as static architecture, which integrates 

nanoscale molecular structures and spatially resolved data from molecular modeling, cryo-

electron microscopy, cryo-electron tomography, correlative light and electron microscopy, 

super-resolution fluorescence imaging, spatial omics, and other multi-scale data. 

Additionally, tissue expansion techniques7,8 can further enhance spatial resolution, 

complementing the high-resolution imaging methods and omics technologies mentioned 

above. This integrated approach provides a detailed three-dimensional context essential for 

accurate AIVC modeling. 

While static data provide a bona fide snapshot of the cell, they fail to capture the dynamic 

nature of living systems. To construct a live AIVC, we introduce dynamic states as the third 

pillar for AIVC development. These data encompass natural processes such as aging, 

development, and carcinogenesis, as well as induced perturbations, including physical, 

chemical, and genetic interventions. Cellular dynamics are historically studied by measuring 

the expression or activity of one or a few molecules at a time. With advancements in high-

throughput omics technologies—such as transcriptomics, proteomics, and metabolomics—it 

is now possible to profile thousands of molecules across diverse cellular states. To build an 

effective AIVC, it is essential to comprehensively capture a wide range of cellular states and 

maximize their diversity to ensure high accuracy in differentiating them, requiring large 
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volumes of dynamic, cell-specific data. Given the limited number of naturally occurring 

states, artificial perturbations serve as effective tools to generate different cellular states. 

Among these, perturbation proteomics is particularly valuable, as proteins are the primary 

structural components and catalysts of cellular biochemical processes9. A recent AIVC pilot 

study integrating perturbation proteomics and AI algorithms demonstrates accurate prediction 

of drug efficacy and synergistic combinations, highlighting the critical role of dynamic 

perturbation proteomics data in constructing robust virtual cell models for drug discovery and 

cellular simulation 10. 

Although single-cell omics technologies provide large datasets of millions of cells, the value 

for constructing AIVC is limited due to the similarity of the cells' states. Antibody-based 

methods, such as those used in the Human Protein Atlas 11, are valuable, but mass 

spectrometry-based proteomics offers distinct advantages in measuring 1000s of proteins, 

protein post-translational modifications, and complex dynamics without the need for affinity-

based reagents12. To better understand the impact of perturbations on cellular behavior, 

emerging spatial omics technologies enable large-scale mapping of molecular distributions, 

providing insights into how perturbations alter cellular processes in their native spatial 

context. In particular, spatial proteomics represents the forefront of this advancement 8,13. In 

addition, innovative sample preparation methods now allow simultaneous multi-omics 

analysis of the same sample 14. We argue that the AI-driven integration of static and dynamic 

data is essential for constructing a functionally robust and predictive AIVC. 

The integration of multimodal data from a priori knowledge, static architecture, and dynamic 

states demands sophisticated AI frameworks capable of hierarchical reasoning, cross-modal 

alignment, and predictive simulation. Foundational architectures such as transformers, 

convolutional neural networks (CNNs), and diffusion models provide critical building blocks 

for data processing and feature extraction. Future advancements in AI algorithms will further 

enhance the fidelity, generalizability, and predictive power of AIVCs.  

The ultimate purpose of these models is multifaceted, addressing key challenges in systems 

biology and personalized medicine. AIVCs aim to infer molecular states across omics layers, 

forecast molecular states based on physiological inputs, and predict cellular outcomes 

following perturbations or in specific conditions based on baseline molecular states. By 

integrating diverse data types and extracting complex, non-linear relationships across 

biological scales, AIVCs leverage their capacity to provide unprecedented insights into 

cellular behavior. 

Evolution of AIVC: Closed-Loop Active Learning Systems 

In our vision for the future of AIVC, we foresee a transition from static, data-driven models 

to adaptive systems capable of evolutionary intelligence. While traditional approaches relied 

on passive data assimilation, modern closed-loop architectures enable AIVCs to actively 

interrogate biological reality through AI model, autonomous robots, and dynamic data. The 

operational framework for closed-loop AIVC development draws inspiration from recent 

breakthroughs in autonomous chemistry laboratories 15. Central to this vision is the 

establishment of closed-loop frameworks that integrate computational prediction with robotic 

experimentation, specifically targeting gaps in dynamic state data (Figure 1). Unlike static 
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data repositories or fixed simulation parameters, closed-loop systems establish a self-

optimizing workflow where AI algorithms continuously identify knowledge gaps in dynamic 

response patterns and automatically design and execute multiplexed perturbation experiments 

to resolve uncertainties in molecular interaction networks. The cycle is completed as the 

system validates predictions through real-time comparison of in silico and in vitro outcomes. 

This autonomous experimentation cycle fundamentally transforms the temporal resolution of 

model refinement. While classical approaches required years of manual hypothesis testing in 

exploratory synthetic chemistry research, closed-loop systems can achieve equivalent 

knowledge gains through mere weeks of targeted robotic experimentation, dramatically 

accelerating the pace of scientific discovery and understanding 15. 

A critical challenge in modeling dynamic states is the combinatorial complexity of cellular 

responses to perturbations. While existing datasets capture snapshots of induced or natural 

states, they often lack systematic coverage of the parameter space. Our proposed closed-loop 

active learning systems could prioritize high-impact perturbations—such as CRISPR-based 

gene knockouts, small-molecule treatments, or optogenetic triggers—based on their potential 

to reduce model uncertainty or reveal novel regulatory mechanisms. For example, an AIVC 

trained on baseline proteomic profiles might identify understudied phosphorylation events in 

stress response pathways, prompting robotic platforms to perform time-resolved 

phosphoproteomics under targeted metabolic perturbations. This feedback loop would not 

only refine the model’s understanding of signaling dynamics but also generate purpose-built 

datasets that maximize biological insight per experiment. As robotic throughput increases and 

multimodal data integration matures, AIVCs may soon autonomously guide the resolution of 

longstanding questions in cell biology—from decoding context-specific protein functions to 

engineering synthetic cellular behaviors. 

Low-hanging fruits 

Selecting a proper cellular model for the inaugural AIVC is a crucial decision that will shape 

the development and validation of this groundbreaking technology. Several candidates merit 

consideration, each with its own advantages and limitations. As one of the simplest self-

replicating organisms, mycoplasma offers a minimalist system for modeling. However, its 

unique biology may limit broader applicability. E. coli, the well-studied prokaryote, provides 

a wealth of existing data and a simpler cellular structure. Its rapid growth and ease of genetic 

manipulation are advantageous, but it lacks the complexity of eukaryotic cells. As a 

eukaryote with subcellular organelles similar to human cells, yeast offers a balance between 

simplicity and relevance to higher organisms. Its genetic tractability and established role in 

biotechnology make it an attractive candidate. The immortalized human cancer cell lines 

(e.g., HeLa, HEK293) are widely used in research and associated with vast amounts of 

phenotypic and omics data. 

While extensive experimental data exist for these cell types, significant gaps remain across 

the three pillars, particularly in their dynamic states. Notably, perturbation proteomics data, 

which are essential for building a comprehensive and dynamic AIVC, are scarce across all 

the candidate cell types. 
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We propose starting with a relatively simple yet informative model, such as S. cerevisiae. 

This organism has relatively small genomes and boast a wealth of perturbation omics and 

imaging data, coupled with established protocols for genetic manipulation and high-

throughput experiments. As a eukaryote, yeast presents a multi-compartmented cellular 

structure, providing an excellent platform to model complex intracellular organization and 

dynamics. This feature allows for a more comprehensive representation of eukaryotic cellular 

processes, bridging the gap between prokaryotic and higher eukaryotic systems. Moreover, S. 

cerevisiae's relevance extends beyond basic research to applied fields such as synthetic 

biology and drug screening, enhancing the potential impact of the AIVC. 

Although S. cerevisiae presents compelling advantages as an initial model, human cancer cell 

lines remain pivotal candidates for subsequent AIVC development. Their pervasive use in 

biomedical research, immediate relevance to human pathophysiology, and potential to 

revolutionize drug discovery and personalized medicine render them invaluable targets for 

AIVC modeling. 

Developing an AIVC for these simpler organisms can serve as a proof of concept, allowing 

us to address fundamental questions posed by Bunne et al.6: What are the specific data needs 

and requirements for building an AIVC? How much data is necessary to construct a robust 

and predictive AIVC? How can we develop a comprehensive and adaptable benchmarking 

framework to evaluate AIVC performance? By tackling these questions with a simpler model 

organism, we can refine our methodologies and establish best practices before advancing to 

more complex cellular systems. This stepwise approach will provide valuable insights into 

the scalability of the AIVC concept and inform future efforts to model more complex 

eukaryotic cells and cell populations. 

Conclusion and outlook 

As we create and grow AIVCs in the digital petri dish of modern biomedical research, we 

must carefully consider the 'nutrients' that will nourish their growth. Our proposed three data 

pillars of a priori knowledge, static architecture, and dynamic states forms the essential 

medium for these in silico entities. Among these, perturbation-based omics data - 

transcriptomics, proteomics, and metabolomics - emerge as the critical growth factors. 

To efficiently generate this wealth of perturbation data, we envision Closed-Loop Active 

Learning Systems as the next evolutionary step. These systems, inspired by autonomous 

chemistry laboratories, will seamlessly integrate AI-driven predictions with robotic 

experimentation. Like a skilled gardener, they will identify knowledge gaps, design targeted 

experiments, and continuously refine our understanding of cellular complexities. The journey 

from static models to adaptive, self-optimizing AIVCs promises to revolutionize drug 

discovery, disease modeling, and fundamental biological research. We also propose the low-

hanging fruits along the journey. Creating and growing a virtual yeast cell might be a valid 

option. As we stand on the brink of this exciting frontier, the collaborative efforts of the 

scientific community will be crucial in realizing the full potential of AIVC and driving the 

future of in silico life sciences.  
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Figure 1 

 
Figure 1. Data pillars for AIVC growing and evolution through closed-loop learning. 

This schematic illustrates the three key pillars for growing AIVCs: a priori knowledge, static 

architecture, and dynamic states. These are integrated using AI algorithms to model cellular 

behavior, with examples of model organisms like E. coli, and yeast. It also showcases the 

evolution of AIVCs towards closed-loop active learning systems. In this advanced 

framework, computational predictions guide automated experimentation, with a particular 

focus on perturbation omics. AIVC – Artificial intelligence virtual cell. 

 


