Spatially resolved proteomics via tissue expansion 基于组织膨胀的空间蛋白质组学

李璐 Lu Li 2022.11.29

The importance of spatial proteomics in medicine

Nature Reviews Cancer volume 19 (2019)

Microsampling techniques for spatial proteomics

西湖大学

matrix-assisted laser desorption/ionization (MALDI)

Nat Commun. 2020 Jan 7;11(1):8. Curr Opin Chem Biol. 2019 Feb;48:64-72.

Spatial proteomics

OPTICAL IMAGING

Expansion microscopy

Fei Chen,^{1*} Paul W. Tillberg,^{2*} Edward S. Boyden^{1,3,4,5,6}

In optical microscopy, fine structural details are resolved by using refraction to magnify images of a specimen. We discovered that by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. By covalently anchoring specific labels located within the specimen directly to the polymer network, labels spaced closer than the optical diffraction limit can be isotropically separated and optically resolved, a process we call expansion microscopy (ExM). Thus, this process can be used to perform scalable superresolution microscopy with diffraction-limited microscopes. We demonstrate ExM with apparent ~70-nanometer lateral resolution in both cultured cells and brain tissue, performing three-color superresolution imaging of ~10⁷ cubic micrometers of the mouse hippocampus with a conventional confocal microscope.

Science (2015)

Thought leaders reveal the technologies and topics likely to transform life -science research in the year ahead.

nature methods

ARTICLES

4D-Proteomics

SWATH/DIA

Nature (2018)

Nature Methods (2020)

diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition

Florian Meier^{©12}, Andreas-David Brunner^{©1}, Max Frank^{®2}, Annie Ha³, Isabell Bludau¹, Eugenia Voytik¹, Stephanie Kaspar-Schoenefeld⁴, Markus Lubeck⁴, Oliver Raether⁴, Nicolai Bache⁵, Ruedi Aebersold^{®47}, Ben C. Collins^{®48}, Hannes L. Röst^{®3} and Matthias Mann^{®19}

西湖大學

ProteomEx = Proteomics + Expansion

We describe a spatially resolved proteomics method based on the combination of tissue expansion with mass spectrometry-based proteomics. ProteomEx enables quantitative profiling of the spatial variability of the proteome in mammalian tissues at ~160 µm lateral resolution, equivalent to the tissue volume of 0.61 nL, using manual microsampling without the need for custom or special equipment.

ProteomEx workflow development and optimization

 i) an optimized hydrogel with enhanced expansion factor and mechanical stability; ii) reversible protein anchoring to polymer network; iii) isotropic expansion of sample; iv) sample staining; v) sample microdissection; vi) in-gel digestion and peptide extraction

西湖大學

ProteomEx workflow development and optimization

Imaged by bright field microscope

While it takes about 58 hours to process fixed samples, the required hands-on time is only 5 h, *i.e.*, less than 10% of total duration.

ProteomEx validation and characterization

Explored the volume-dependent limit of tissue microsampling using ProteomEx approach

西湖大

G

Biopsy punches Lateral resolution Tissue volume # peptides # proteins

1 mm	2 mm	3 mm	4 mm	5 mm
160 µm	320 µm	480 µm	640 µm	800 µm
0.6 nL	2.4 nL	5.4 nL	9.6 nL	15.0 nL
2987	15,705	23,898	35,160	37,071
928	3044	4203	5058	5105

To assess the applicability of ProteomEx to various mammalian tissues

西湖大

ProteomEx: Staining

Original tissue (pre-expansion)

1000 µm

西湖大學

Coomassie blue staining

Proteomic identification

DAPI stainingAβ immunostaingMergedFor the 2.52 nL volume of the immunostained tissue, we identified 7000 peptides corresponding
to 2000 proteins for three replicates.

To explore the limits of lateral spatial resolution and tissue volume

Identification of 1 mm-diameter punch gels

8-fold in linear dimension (512-fold in volume)

The pre-expansion radius of 125 µm

The pre-expansion volume of tissues was 0.37 nL, equivalent to approximately 160 cells identified and quantified more than 3000 peptides, and 1000 proteins

Proteomic profiling of normal and pathogenic brain tissue with subregion precision

(A) Study design of proteomic analysis of the wild-type and AD mouse model representing (1) experimental animal groups (n=3 mice per group), (2) sample acquisition, (3) MS data acquisition and analysis. Brain subregions selected namely, primary visual cortex (V1, n=3 punches per slice per mouse), hippocampal field CA1 (CA1, n=3 punches per slice per mouse), hippocampal field CA3 (CA3, n=3 punches per slice from per mouse), dentate gyrus (DG, n=1 punch per slice per mouse), and medial geniculate complex (MGC, n=2 punches per slice per mouse). Created with Biorender.com.

Proteomic profiling of normal and pathogenic brain tissue with subregion precision

B		С							D All (84) — Cortex V(1 (6) CA1 (198)
D		Age	Region \$	Subregion	Proteins	Down	Up	All	Hippo_all (73)
122 samples, 6215 proteins			All	-	5152	0	1	1	32 41 168
			Cortex	V1	4581	0	1	1	
10		Young	^g Hippocampus	All	4870	0	2	2	Hippo all (73) 28 CA3 (19) 9
				CA1	4481	0	0	0	Down_STXBP2 Down_STXBP2
				CA3	4165	0	0	0	Up_APOE Down PRR7
				DG	3933	0	0	0	SUP_CLU Down_VAMP1
t-SNE 2 9			MGC	-	3791	0	0	0	់ថ្លូ100 _ Up_APOE
			All	-	6170	72	12	84	
			Cortex	V1	5672	3	3	6	$\underbrace{\underline{18}}_{0} = \underbrace{18}_{18} \underbrace{8864332}_{744332222422222} \underbrace{18}_{22222422222} \underbrace{18}_{22222} \underbrace{18}_{222222} \underbrace{18}_{22222} \underbrace{18}_{222222} \underbrace{18}_{222222} \underbrace{18}_{222222} \underbrace{18}_{222222} \underbrace{18}_{222222} \underbrace{18}_{222222} \underbrace{18}_{222222} \underbrace{18}_{22222} \underbrace{18}_{222222} \underbrace{18}_{22222} \underbrace{18}_{22222} \underbrace{18}_{22222} \underbrace{18}_{2222} \underbrace{18}_{2222} \underbrace{18}_{22222} \underbrace{18}_{222222} \underbrace{18}_{2222222} \underbrace{18}_{2222222} \underbrace{18}_{2222222} \underbrace{18}_{222222} \underbrace{18}_{222222} \underbrace{18}_{222222} \underbrace{18}_{22222} \underbrace{18}_{222222} \underbrace{18}_{22222} \underbrace{18}_{222222} \underbrace{18}_{222222} \underbrace{18}_{222222} \underbrace{18}_{2222222} \underbrace{18}_{2222222} \underbrace{18}_{22222222} \underbrace{18}_{22222222} \underbrace{18}_{222222222222222222222222222222222222$
			Linnaampua	All	6046	66	7	73	
-10	Label	Old		CA1	5576	192	6	198	Cortex (6)
	Young_WI		nippocampus	CA3	5706	18	1	19	$\begin{array}{c} \text{CA1} (198) \\ \text{CA1} (198) \\ \end{array} = \begin{array}{c} \text{A} \\ \text{CA1} (198) \\ \end{array}$
-20	Old WT			DG	5467	0	0	0	
	Old_AD		MGC	-	5203	1	0	1	Old group Down_STXBP2
	-20 -10 0 10								Up_APOE
	t-SNE 1								

(B) t-SNE plot showing the sample clusters based on the prototype (n=3 mice per group). (C) Number of differentially expressed proteins in mouse brain. (D) Venn and upset diagrams showing the DEP overlaps for selected regions.

Proteomic profiling of normal and pathogenic brain tissue with subregion precision

5000 um

(E) Representative spatial proteomic maps of syntaxin binding protein 2 (STXBP2) in old WT and old AD brain slices. The a/b/c in the punches represents biological replicates from the same brain region. (F) Pathway enrichment of 198 DEPs in CA1 and Sanky plot exhibiting the correlation between enriched pathways and proteins. (G) The hierarchical clustering heatmap showing the z-score scaled Pearson correlation coefficients between two samples labeled by subregions of hippocampus and mouse group. The Pearson correlation coefficients were estimated by the abundance expression of 101 proteins.

西湖大學

ProteomEx: discussion and limitation

- ✓ We could achieve the lateral resolution of about 160 µm, which corresponds to ~262 cells or 0.61 nL tissue volume before expansion. The ProteomEx protocol is robust, cheap, easy to use, and can be readily deployed in a regular lab using commercially available reagents and common supplies.
- Enabling the handling of submillimeter gel pieces, for example, by employing robotics or microfluidics, can further improve the spatial resolution of ProteomEx.
- ✓ Since ProteomEx resembles protein-retention expansion microscopy, it can be combined with superresolution microscopy of cellular structures and DNA and RNA fluorescence in situ hybridization enabling a spatially resolved multi-omics approach.

Acknowledgements

• We thank Rujie Qi and Yuan Yao from Westlake University for help with characterization of hydrogel mechanical stability. We also thank Xun Guo from Westlake University for help with tissue sample preparation.

THANK YOU

