

Rui Sun 孙瑞 Laboratory of Proteomics and Big Data 蛋白质组大数据实验室 www.guomics.com

WESTLAKE UNIVERSITY

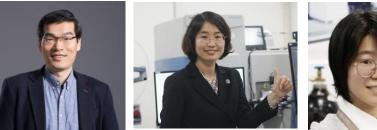
STLAKE OMIC

Cell Discovery

Explore content ~ About the journal ~ Publish with us ~

nature > cell discovery > articles > article

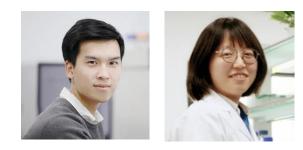
Article | Open Access | Published: 25 July 2022

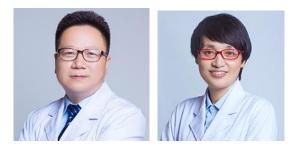

Enhanced inflammation and suppressed adaptive immunity in COVID-19 with prolonged RNA shedding

Xiaohua Tang, Rui Sun, Weigang Ge, Tingting Mao, Liujia Qian, Chongguan Huang, Zhouyang Kang, Qi Xiao, Meng Luo, Qiushi Zhang, Sainan Li, Hao Chen, Wei Liu, Bingjie Wang, Shufei Li, Xiaoling Lin, Xueqin Xu, Huanzheng Li, Lianpeng Wu, Jianyi Dai, Huanhuan Gao, Lu Li, Tian Lu, Xiao Liang, Xue Cai, Guan Ruan, Fei Xu, Yan Li, Yi Zhu \boxtimes , Ziging Kong \boxtimes , Jianping Huang \boxtimes & Tiannan Guo \boxtimes (- Show fewer authors

Cell Discovery 8, Article number: 70 (2022) Cite this article

1 Altmetric Metrics




郭天南

孙瑞

朱怡

葛伟刚 温州中心医院

钱鎏佳 迪安诊断

> 孔子清 康洲阳

毛婷婷,黄重庆

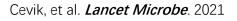
唐少华

黄建平

OUTLINE

- Background and research gap
- Overview of clinical patients, samples and study design
- Immunological analysis between the LC and SC groups
- Differentially expressed proteomes and metabolomes between the LC and SC groups
- Integration of proteomic and metabolomic data
- Risk factors for COVID-19 prognosis

BACKGROUND

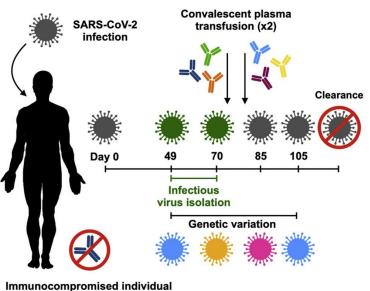

The duration of viral RNA shedding

	Mean duration of viral shedding (95% CI), days	SE	Variance		luration I shedding,	Relative weight
Al-Jasser et al (2019) ⁹⁹	13-2 (12-3-14-0)	0.4	0.2	249	-	37.58
Alkendi et al (2019)100	18·5 (16·3–20·7)	1.1	1.2	58		33-85
Park et al (2018)101	14.3 (10.8–17.7)	1.8	3.2	17	-	28·57
Overall	15-3 (11-6-19-0)	1.9	3.6	324	\diamond	
					0 20	40
					Duration of viral shedding (days)	

The mean duration of MERS-CoV shedding is less than 20 days

	Mean duration of viral shedding (95% CI), days	SE	Varlance	Total duration of viral shedding, days	Relati weigh
ang et al (2020) ²⁹	19-3 (18-8–19-7)	0.2	0	32	- 2.53
Cai et al (2020) ²⁴	12·3 (11·9–12·6)	0-2	0	298	- 2.53
lu et al (2020) ³⁵	14-3 (12-9-15-6)	0-7	0-5	59	- 2-48
(im et al (2020) ⁴	8.3 (6.9-9.8)	0.7	0.5	28	2-48
e et al (2020)57	7-5 (5-6-9-4)	1.0	0.9	12	2.44
o et al (2020)68.	18·2 (15·3–21·1)	1.5	2.1	10	- 2-34
ing et al (2020) ⁴⁵	10.5 (9.4-11.6)	0.6	0.3	66	- 2.50
Qian et al (2020) ⁷¹	11.7 (10.1-13.2)	0.8	0-6	24	- 2-47
Vu et al (2020) ³⁸	15.7 (14.2-17.2)	0.8	0-6	74	2-47
(iao et al (2020) ⁴³	22.8 (20.4-25.1)	1.2	1-4	56	- 2-40
(u et al (2020) ³⁶	17-3 (16-1-18-5)	0.6	0.4	113	2.49
(u et al (2020) ¹²	6.0 (3.6-8.4)	1.2	1.5	10 -	2-39
/ongchen et al (2020) ³⁴	13.3 (2.8-23.9)	5.4	28.9	21 —	1.18
/oung et al (2020) ²⁰	13-3 (9-2-17-3)	2.1	4-2	18	
2hou et al (2020)40	31.7 (27.9-35.4)	1.9	3.6	41	2.21
2hou et al (2020) ³³	20.3 (19.6-21.1)	0.4	0.1	191	- 2.52
2hu et al (2020) ⁸²	25-0 (16-2-33-8)	4.5	20-2	10	1-41
akurai et al (2020) ⁴¹	8.7 (7.8-9.5)	0-4	0-2	90	2.52
To et al (2020)58	16-5 (14-0-19-0)	1.3	1.7	23	- 2.38
luang et al (2020) ⁴⁹	22.0 (20.9-23.1)	0.6	0.3	200	2.50
lang et al (2020) ⁴⁷	18.3 (16.9-19.8)	0.8	0.6	120	- 2-48
5hi et al (2020) ³¹	28.0 (26.6-29.4)	0.7	0.5	246	2-48
falmy et al (2020) ⁴²	21.0 (19.4-22.6)	0.8	0.7	119	- 2.47
Then et al (2020) ²⁶	12.0 (11.3-12.7)	0.4	0-1	284	2.52
lu et al (2020)53	7.1 (4.3-9.8)	1.4	2.0	24 -	2.35
50 ng et al (2020)	27.3 (21.2-33.5)	3.1	9-8	21	1·83
(ang et al (2020)54	19.7 (17.9-21.5)	0.9	0-8	45	2-45
Wu et al (2020) ⁷⁹	17-3 (15-8-18-9)	0.8	0-6	91	- 2-47
2 (2020)22 (hang et al	9.5 (7.8-11.2)	0-9	0-7	23	2-46
u et al (2020)64	30.0 (26.5-33.5)	1.8	3.1	50	- 2.26
fan et al (2020) ¹⁷	15.8 (13.9-17.6)	1.0	0.9	67	2-44
(ujawski et al (2020) ¹⁶	15.5 (11.2-19.8)	2.2	4-9	12	2.12
(an et al (2020) ³⁷	24.3 (22.4-26.2)	1.0	0-9	120	2-44
(ang et al (2020) ⁸¹	16.1 (14.9-17.3)	0.6	0.4	213	- 2.50
(u et al (2020) ⁸⁰	12.0 (9.1-14.9)	1.5	2.2	14	2.33
luang et al (2020) ²¹	17.9 (15.6-20.2)	1.2	1-4	33	
Chen et al (2020) ²⁵	11.0 (10.8-11.2)	0.1	0	249	2:53
Thang et al (2020)61	9.5 (7.1-11.9)	1-2	1.5	16 -	- 2-39
i et al (2020)66	53.9 (50.7-57.1)	1.6	2.7	36	> 2.29
Pongpirul et al (2020)70	16-3 (7-8-24-9)	4.3	18.9	11 -	1.45
fan et al (2020) ¹⁰	13.3 (8.6–17.9)	2.4	5.5	10	2.08
Wang et al (2020) ⁷⁷	16.0 (13.1-18.9)	1.5	2.2	18	- 2.33
2ha et al (2020)46	13.8 (12.6-15.1)	0.6	0.4	31	2-49
Overall	17.0 (15.5-18.6)	0.8	0-6	3229	

The mean duration of SARS-CoV-2 RNA shedding is usually from 10-25 days.



西湖大學

The relationship between the phenotype and viral RNA shedding

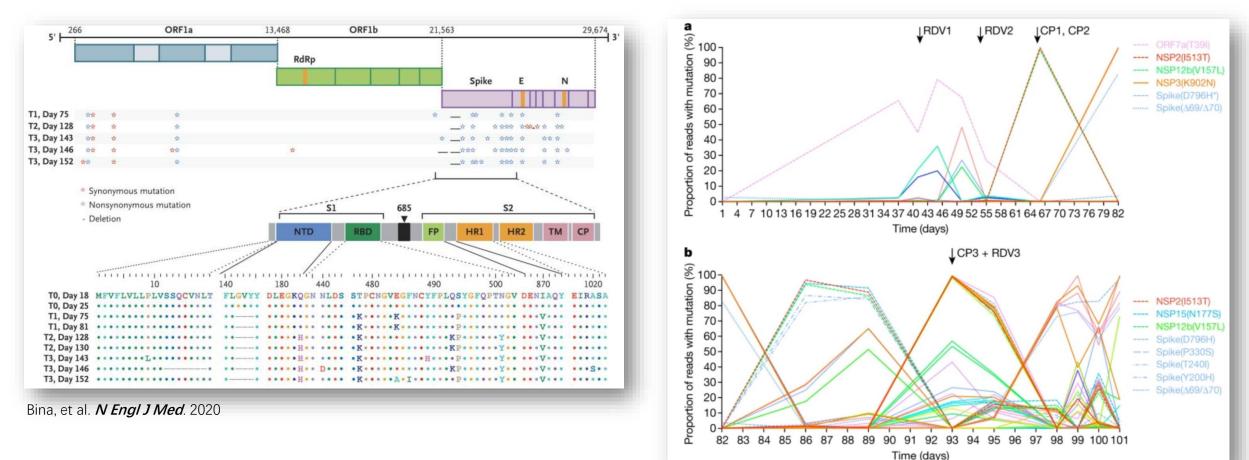
Table 1

Long-term SARS-CoV-2 Shedding

Cancer (CLL)

· Hypogammaglobulinemia

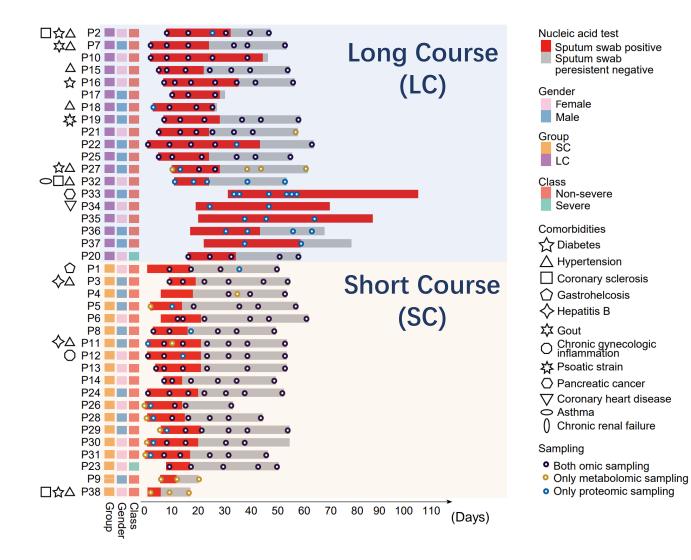
Avanzato, et al. *Cell*. 2020


Comparison of Clinical Characteristics and Treatment Responses Between Groups With Different Shedding Durations

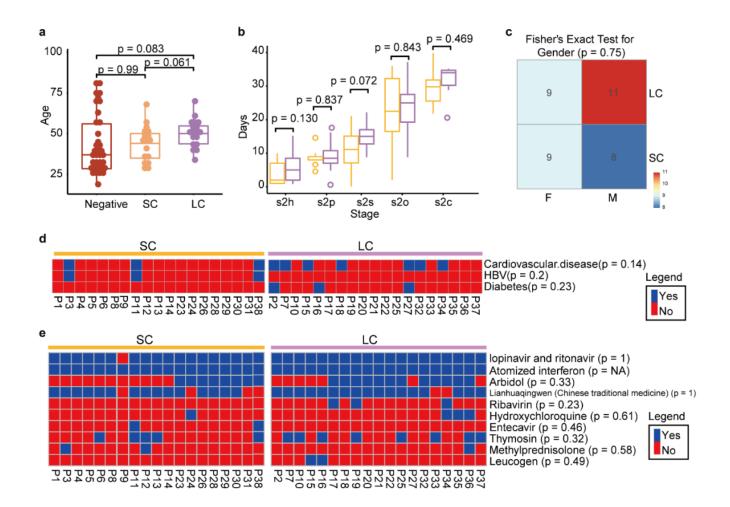
	All Pa	All Patients (N = 113)		Viral Shedding Duration After Illness Onset			
	n	Values	n	<15 Days (n = 37)	n	≥15 Days (n = 76)	P ^a
Age, years, median (IQR range)	113	52 (43, 63)	37	48 (34, 61)	76	54.5 (45, 63)	.033
Male sex, % (n)	113	58.4 (66)	37	40.5 (15)	76	67.1 (51)	.00
Exposure history in Hubei, % (n)	113	62.8 (71)	37	67.6 (25)	76	60.5 (46)	.46
Exposure history to confirmed patients, % (n)	113	40.7 (46)	37	51.4 (19)	76	35.5 (27)	.10
Duration from illness onset to hospital admission, median (IQR), days	113	5 (3, 8)	37	4 (2, 6)	76	6 (4, 9)	.00
Patients with severe disease at admission, % (n)	113	28.3 (32)	37	16.2 (6)	76	34.2 (26)	.04
Comorbidity, % (n)							
Hypertension	113	23.0 (26)	37	8.1 (3)	76	30.3 (23)	.00
Diabetes	113	8.0 (9)	37	5.4 (2)	76	9.2 (7)	.71
Coronary heart disease	113	5.3 (6)	37	5.4 (2)	76	5.3 (4)	1
Current smoker	113	7.1 (8)	37	8.1 (3)	76	6.6 (5)	.71
Treatment, % (n)							
Corticosteroid	113	56.6 (64)	37	40.5 (15)	76	64.5 (49)	.02
Umifenovir	113	48.7 (55)	37	43.2 (16)	76	51.3 (39)	.42
Ribavirin	113	16.8 (19)	37	8.1 (3)	76	21.1 (16)	.08
Invasive mechanical ventilation	113	15.9 (18)	37	2.7 (1)	76	22.4 (17)	.00

Xu, et al. Clinical infectious diseases. 2020

The relationship between the viral RNA shedding prolonged and evolution

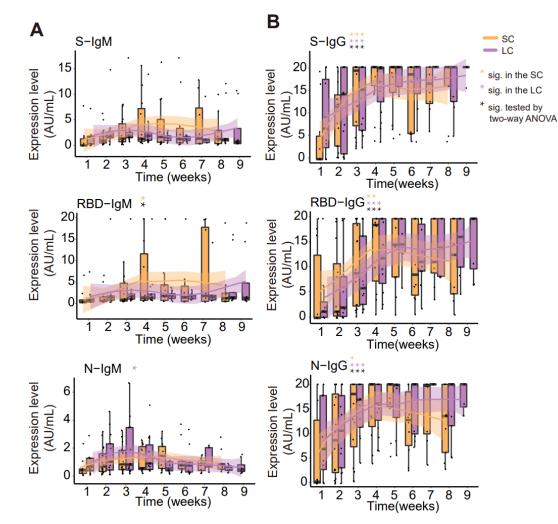


Kemp, et al. *Nature*. 2021


Few studies have characterized host responses of patients with long viral RNA shedding at the molecular level.

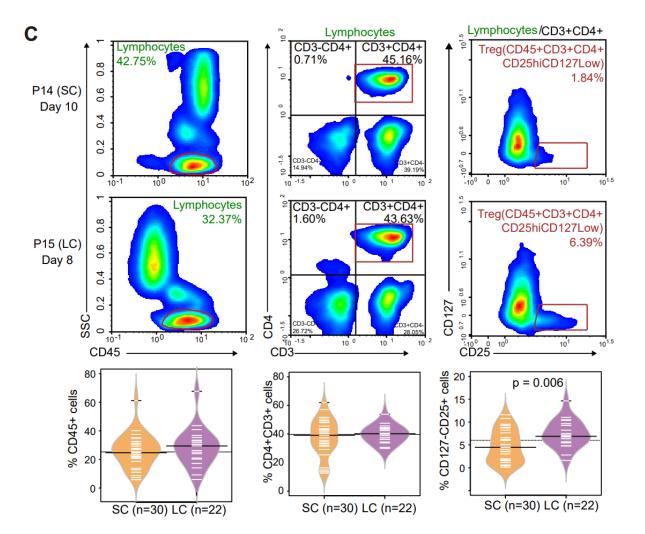
THE OVERVIEW OF CLINICAL PATIENTS

NO SIGNIFICANT CLINICAL DIFFERENCES

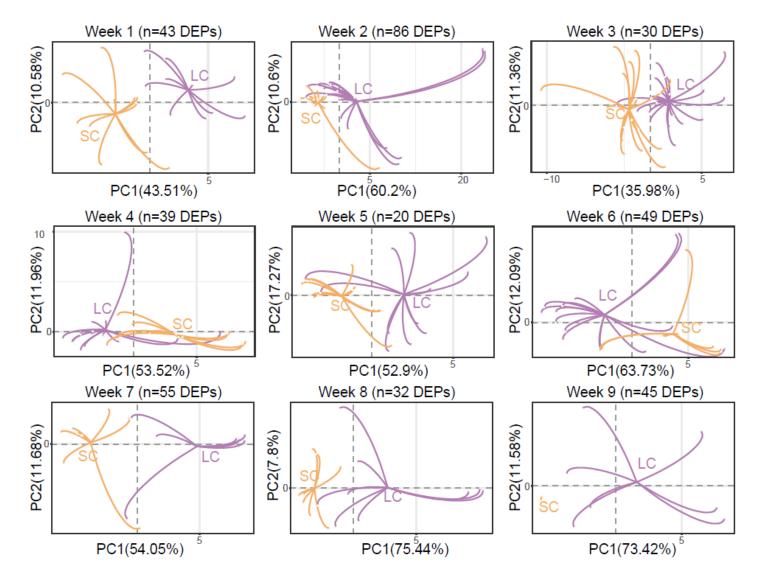

西湖大學

STUDY DESIGN

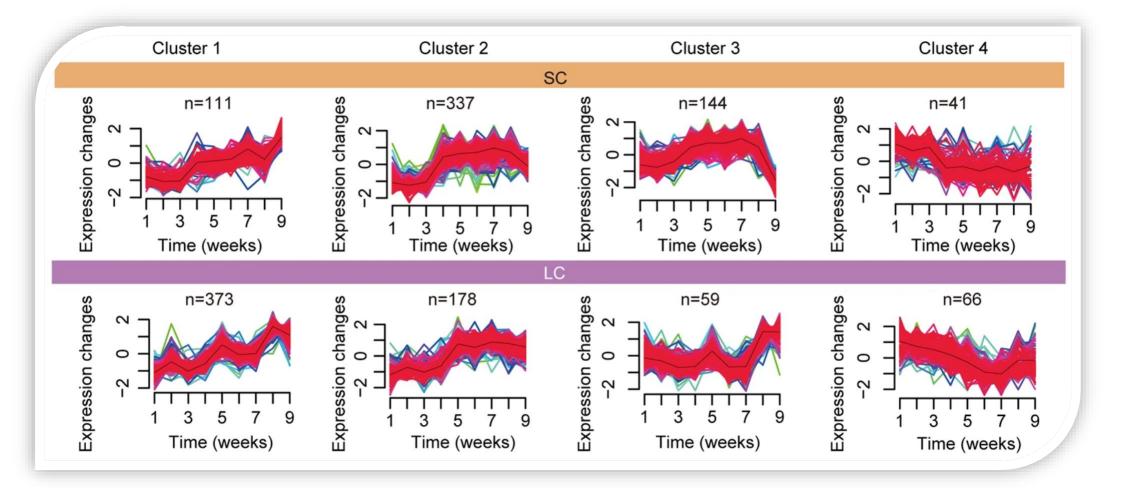
Virological detection Sputum samples COVID-19 patients (N = 38, n = 298) Ctrl patients (N = 35, n = 70)	PCR → SARS-CoV-2 RNA	Immunological detection Antibodies:Anti S/RBD/N IgG/IgM (N = 37, n = 190 Serum samples) Immune cells, cytokines Flow cytometry (N = 34, n = 43 Whole blood samples)				
	Patients &	& Samples				
Batch design Batches (n = 18) Samples (n = 224) Technical replicates(n = 44) ↓ Inactivation 56°C 30 min Depletion of high abundance proteins & digestion ↓ TMT pro-126 ↓ TMT pro-127N ↓ TMT pro-127N ↓ TMT pro-127N ↓ TMT pro-128N ↓ TMT pro-133C ↓ TMT pro-134N ↓		(LC) (N = 35) Samples (n = 193)				
Proteomic analysis	/gene products	Metabolomic analysis				


unpublished 西湖大学

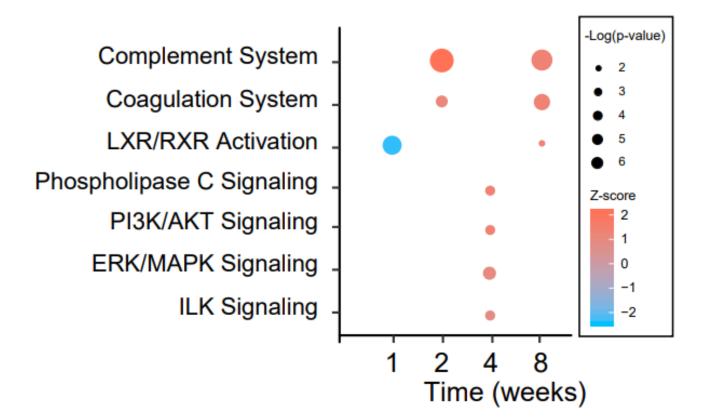
THE TIME-SERIES IMMUNOLOGICAL DETECTION


西湖大學

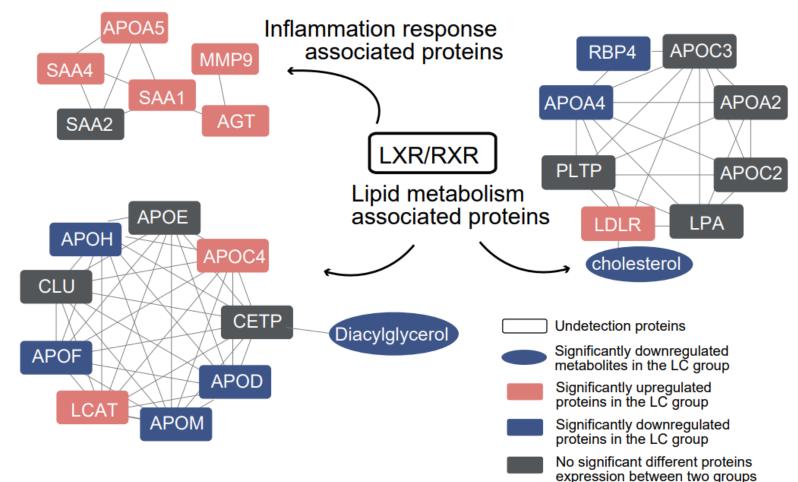
DOWNREGULATION OF TREG CELLS


西湖大學

DIFFERENCE BETWEEN THE LC AND SC

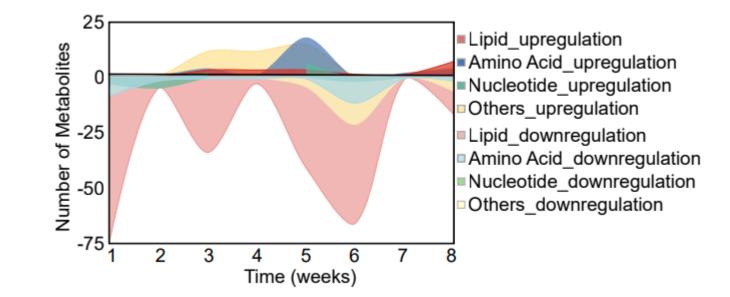

西湖大學

DELAYED IMMUNE RESPONSE IN THE LC GROUP

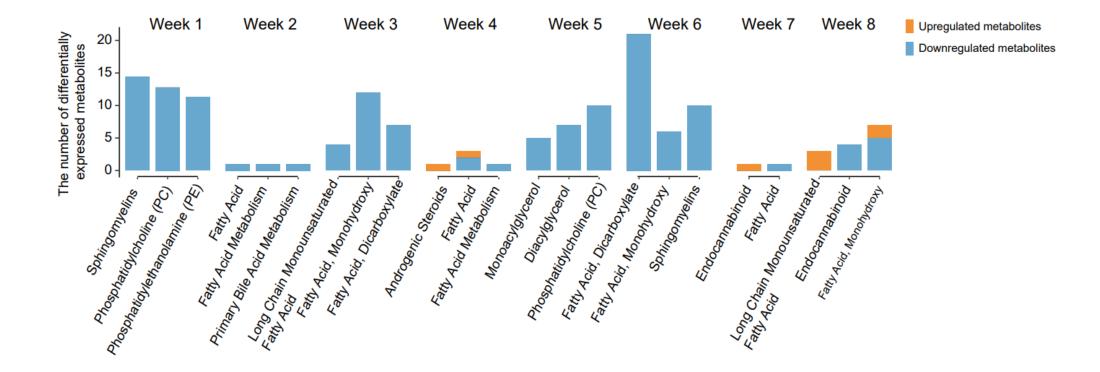


西湖大學

LXR/RXR WAS INHIBITED IN THE LC GROUP

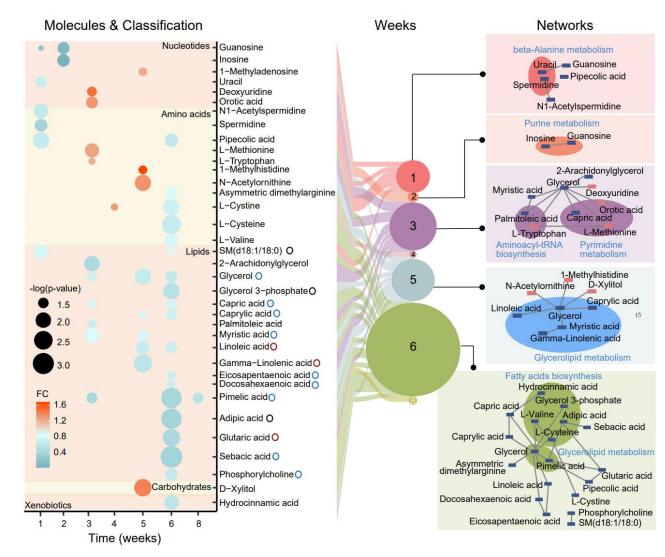


LXR/RXR MEDIATED LIPID REGULATION AND IMMUNITY IN THE LC GROUP

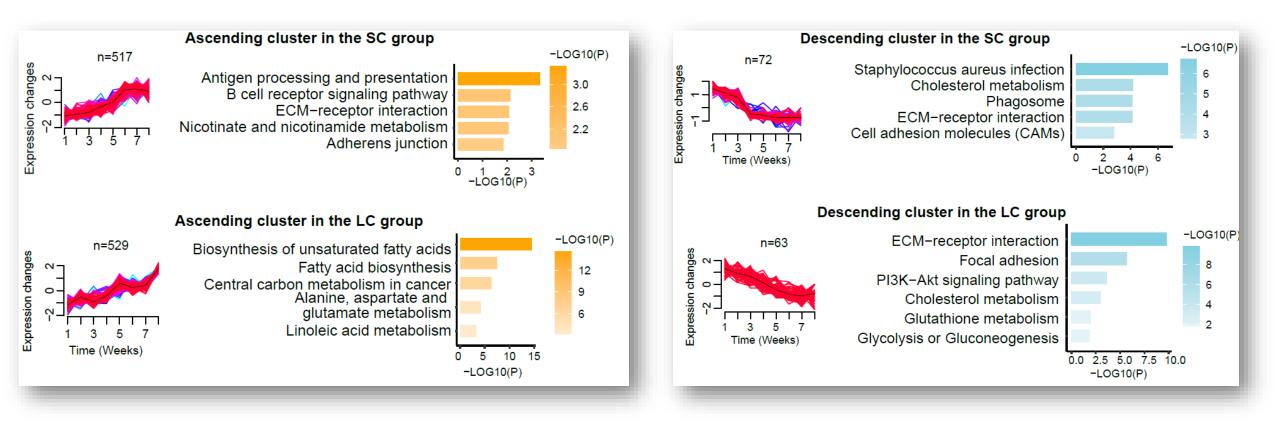


西湖大學

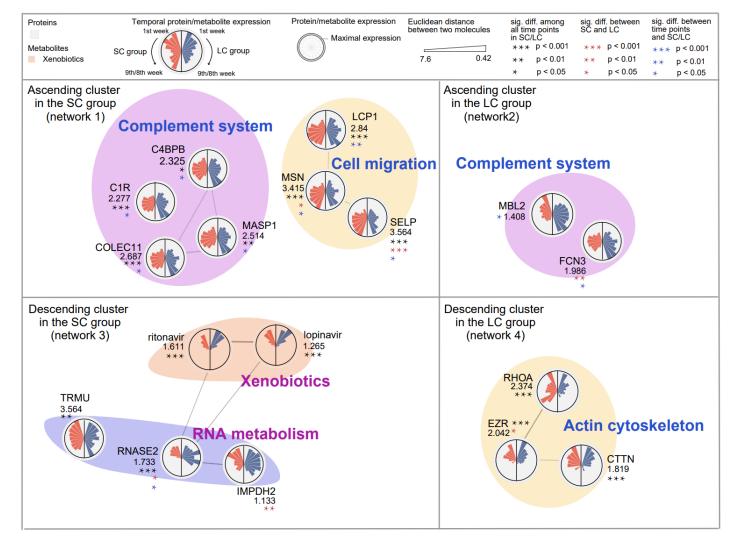
DOWNREGULATED LIPID IN THE LC GROUP



The most significantly downregulated lipids in the LC group are sphingomyelins, phosphatidylcholine (PC), and PC is a well-known as a kind of anti-inflammation factor.

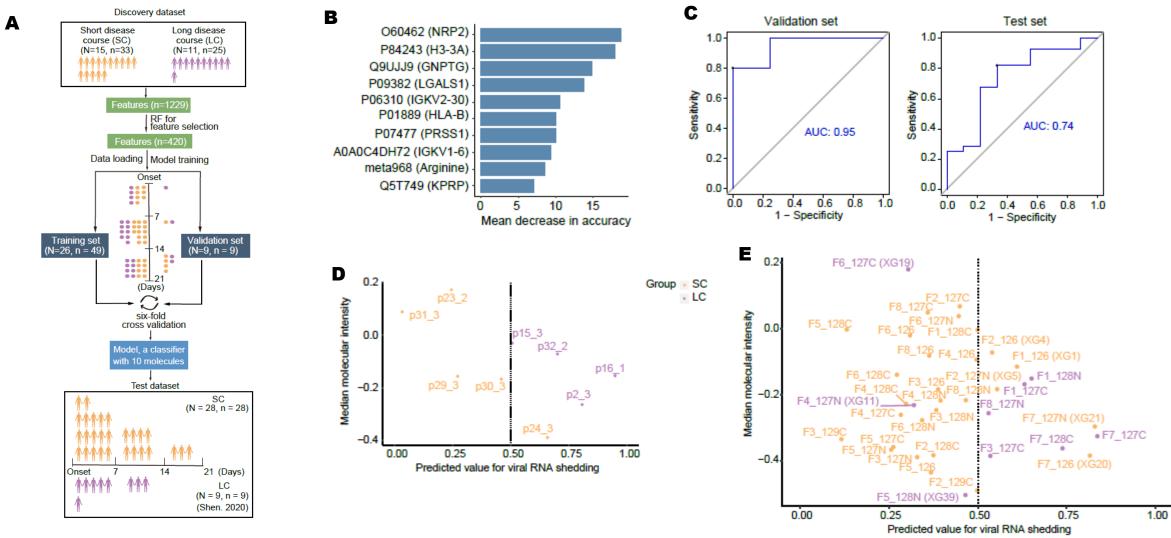


DOWNREGULATED ANTI-INFLAMMATORY LIPIDS IN THE LC GROUP



西湖大學

PROTEOMICS AND METABOLOMICS INTEGRATION


KNN-BASED NETWORK ANALYSIS

Activated lectin pathway, suppressed cell migration, and enhanced viral replication plausibly contribute to prolonged RNA shedding.

MOLECULAR RISK FACTORS FOR PROLONGED VIRAL RNA SHEDDING PERIOD

西湖大學

CONCLUSION

- To understand the molecular mechanisms underlying prolonged viral RNA shedding in COVID-19 patients, we profiled a deep and time-resolved landscape of their plasma proteome and metabolome.
- These patients exhibited prolonged inflammation and suppressed adaptive immunity.
- Prolonged viral RNA shedding was associated with ten potential risk factors, including NRP2, H3-3A, GNPTG, LGALS1, IGKV2-30, HLA-B, PRSS1, IGKV1-6, KPRP, and arginine.

