Data-Independent Acquisition Mass Spectrometry-based proteomics and Software Tools: a Glimpse in 2020

Fangfei Zhang, Weigang Ge, Guan Ruan, Xue Cai, Tiannan Guo

WILEY

Top Cited Article 2020-2021

Congratulations to:

Fangfei Zhang

whose paper has been recognized as a top cited paper in:

PROTEOMICS

Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020 WILEY

Top Downloaded Article

Congratulations

Fangfei Zhang

whose paper was one of the most downloaded* during its first 12 months of publication in:

PROTEOMICS

Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020

*Among work published between 1 January 2019 – 31 December 2020.

Outline

- DIA-MS data acquisition methods
- DIA software tools for DIA data analysis
- User recommendation for DIA-MS and DIA tools
- Future directions

The emergence of DIA-MS

- LC-MS/MS for holistic understanding of complex biological system
- DIA technique can acquire MS2 spectra for all precursor ions within isolation windows to obtain complete MS/MS data for full mass ranges without any prior knowledge about precursors
- Major challenge in DIA-based methods are computational deconvolution of the multiplexed fragmented spectra thus acquired.

Implementations of DIA-MS

Shotgun CID

Purvine et al., 2003

DIA

Venable et al., 2004

MSE

Plumb et al., 2006

PAcIFIC

Panchaud et al., 2009

AIF

Geiger et al., 2010

SWATH

Gillet et al., 2012

MSX

Egertson et al., 2013

SONAR

Moseley et al., 2018

WiSIM

Koopmans et al., 2018

BoxCar DIA

Meier et al., 2018

ScanningSWATH

Messner et al., 2019

diaPASEF

Meier et al., 2019

PulseDIA

- ♦ SCIEX Triple TOF 5600/6600
- SCIEX Triple TOF 6600+
- ▲ Thermo Orbitrap (QE-HF, QE-HFX, Lumos, Exploris 480)
- ▲ Thermo LTQ

- ★ Waters QTOF
- Bruker timsTOF Pro

Software tools for interpreting DIA data

- Spectral Library-based approaches
 - Tools for searching and building libraries
 - Tools for predicting library assays
 - Library-based scoring peptide identification
- Spectral Library-based approaches

Spectral Library Building Tools

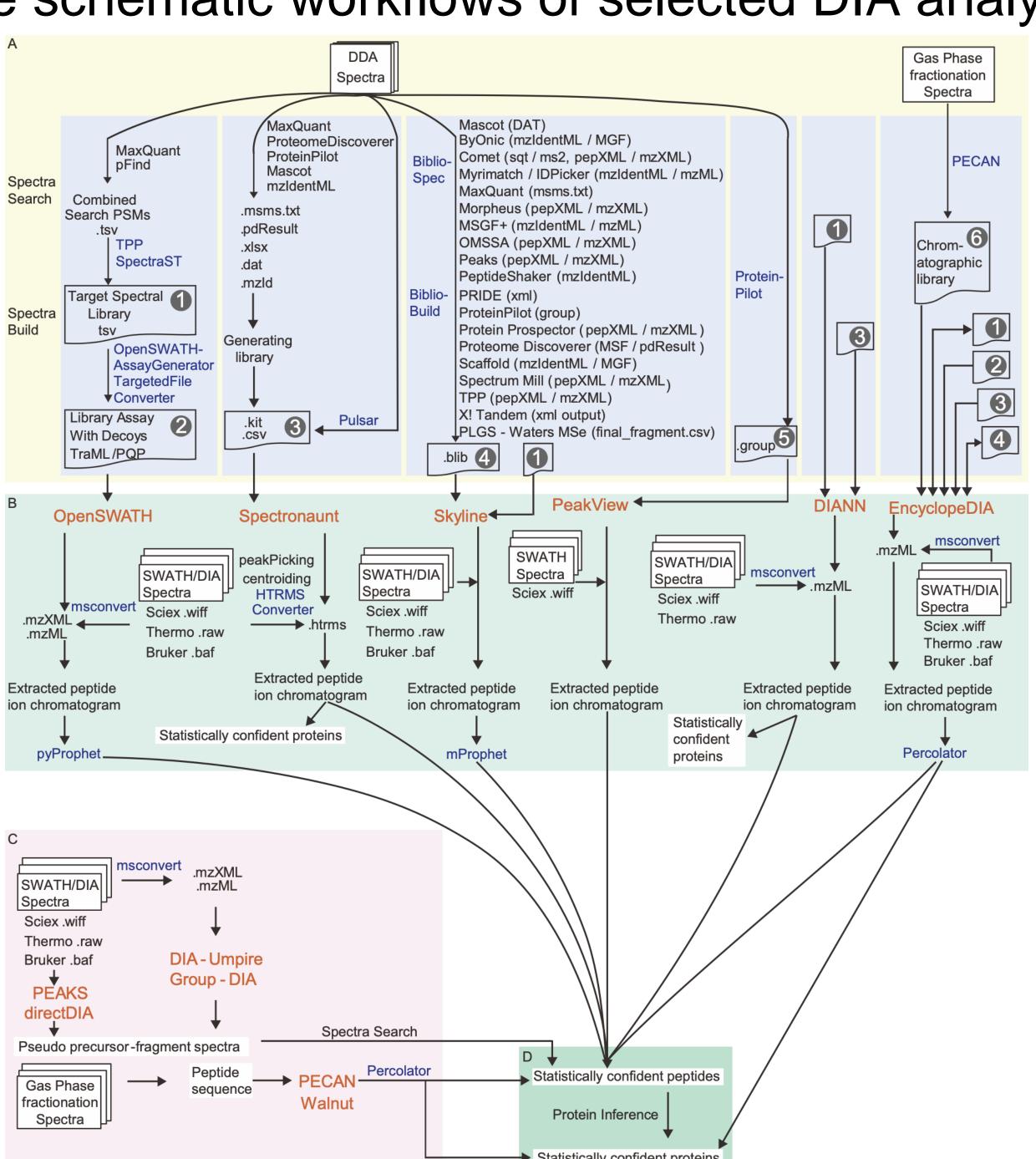
Experimental Spectra Searching				
Comet	X! Tandem	Mascot	Sequest	OMMSA
Eng et al., 2013	Craig et al., 2003	Brosch et al., 2009	Eng et al., 1994	Brewis et al., 2010
MS GF+	ProteinPilot	pFind	MSFragger	MaxQuant
Kim et al., 2014	Shilov et al., 2007	Chi et al., 2018	Kong et al., 2017	Cox et al., 2008

Library Building			
SpectraST Skyline Puls		Pulsar Spectronaut	

Library Predicting			
Deep Mass	Prosit	pDeep	
Tiwary et al., 2019	Gessulat et al., 2019	Zhou et al., 2017	

DIA Analysis Tools

Library-based Analysis				
OpenSWATH	Spectronaut	EncyclopeDIA	Skyline	PeakView
Roest et al., 2014	Bruderer et al., 2015	Searle et al., 2018	MacLean et al., 2010	Gillet et al., 2012
Spector	SWATHProphet	PIQED	DIA-NN	
Peckner et al., 2018	Keller et al., 2015	Meyer et al., 2017	Demichev et al., 2018	


Library-free Analysis				
directDIA	Peaks	DIA-Umpire	Group-DIA	PECAN
Spectronaut	Tran et al., 2019	Tsou et al., 2015	Li et al., 2015	Ting et al., 2017

Statistical Validation			
pyProphet eleman et al., 2015	Percolator Kall et al., 2007		

- ▲ Thermo LTQ
- ◆ SCIEX Triple TOF 5600/6600 ▲ Thermo Orbitrap (QE-HF, QE-HFX, Lumos, Exploris 480)
- SCIEX Triple TOF 6600+

- ★ Waters QTOF
- Bruker timsTOF Pro

The schematic workflows of selected DIA analysis tools

A user perspective for choosing DIA-MS and tools

DIA-MS is not the method of choice if the main goal of a study is to identify maximal number of proteins lower than 20

DIA-MS is mostly applied in single-shot analysis. Therefore, it requires only 0.1-1 microgram peptides for a proteomic analysis.

We recommend building a comprehensive sample specific library to maximize the proteome depth.

DIA-NN is a recently published tool which is packaged into a GUI as well as a command-line interface with fast running speed and deep proteomic coverage.

Outlook

Multiple issues remain to be solved:

- Inability to identify low-abundance and non-canonical or modified peptides
- Precise estimation of peptide and protein FDR
- Technical missing values in large data sets
- The integration of search results from different search engines
- Library free methods to detect novel proteoforms